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Abstract 

The hypercomplex number system of the Dirac equation is used to generalize SU(2) to the 
covering group of SO(4). The basic representations in this number language suggest a patton 
model of 6 "bits" and 6 "antibits"; one with spin 0, two with spin ~,1 and three with spin 
1. The ~elationship of this to the special relativity group is also considered. 

Introduction 

Though the original simple quark theory had to be expanded (three colored 
triplets), and recent high-energy experimental results (Ellis, 1974) cast more 
doubt on the popular parton models, the parton concept may yet survive in 
some modified form. The SU(2) description of isospin is certainly a useful 
concept. The empirical concept of strangeness introduced a generalization of 
the group. Thus, SU(3) seems a rather "natural" extension, when SU(2) is 
written in the standard 2 x 2 complex matrix form. There are well known 
difficulties with SU(3) in relation to Lorentz covariance. This is very serious, 
since the nuclear force is strong and one should expect that a relativistic treat- 
ment is required to describe the partons that make up a proton, neutron, etc. 

In this paper we would like to show that SU(2) can be generalized in a 
'natural' way, leading to the possibility of 6 basic partons and 6 antipartons, 
by casting it in hypercomplex number form. This generalization is compatible 
with special relativity if generalized to rotations in (4, 1) space-time. We have 
argued previously that this generalization is reasonable and connected with 
the existence of rest mass in nature. Here we shall only show how the group 
structure is formulated and how it suggests the number and spins of the partons. 
Tne quark model, though suggested by SU(3), has much of its success without 
reference to the original motivating group. Our development may contain a 
similar pattern. 
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1. SU(2) in Quaternion Form 

The Pauli matrices o k along with o o = 1 form a basis for the complex 
quaternion number ring when complex coefficients are used. The hermitian 
conjugate A* is supplemented by the quatemion conjugate A t ,  where Oo* - 
Oo, ok * = - ok, and C* = C for C a complex coefficient. We then have 

A =AUo v =AnUo " +iAiUo. and (AB)* = B 'A*,  (AB)t  = B t A *  (1.1) 

The "spinor representation" of  the rotation group now takes the form 

Oa' -R$Oa,  ~v'-~ R * O v , R R t  = l eo ,R*  = R * , ~  ~a = ~v =-~ (1.2) 

An inf'mitesimal rotation satisfies 

R = lo  o + 6kot~, 56 ~ 0,=~6'  =--6 =6*  ~ generators io k (1.3) 

Since R has a 2 x 2 complex matrix representation, ff has a 1 x 2 representation, 
and therefore two complex number parts (four real parameters). These parts 
are associated with O(proton) and ~b(neutron) in isospin. 

For completeness, we remark that LL* = 1 a o gives the Lorentz group, with 
generators iok and e k since L* v e L* in general. The Lorentz (space-time) 
transformation is given by x '  = x " ' %  = L*xL, and (x Ix) = x*x  = x"xuo o. 

2. Generalized Number System 

Because of  rest mass, the Weyl equation, l~l~"¢71z~a = 0 ,  is replaced by the 
Dirac equation, l~U(eu)~b a = mc(ifo)~a, and the complex quaternion number 
system {a. ,  io.  } is generalized to a direct product number system with basis 
dements {Oo, ial ,  a2, a 3 } ® {ao, ial,  io2, ia a }; a 16-element number system 
with real coefficients. The basis can have the foUowing matrix representation 

, <e,(o" (, :*) 
(. : )  (if .)  = 0 o.)* (2.1) 

a . )  

The hermitian conjugate, now written ( ) t ,  gives 

(e~)* = (e~), (ie~)? = -(ieu), (fo) ? = (fo), (fk) "~ = - (fk), 

(if o)* = (ifo), and (i/k)* = -(ilk) (2.2) 

We generalize the quaternion conjugate ( )* to ( )^ as follows 

(eo)" - ( e o ) ,  (ek)" - - ( e g ) ,  (ieo) A - - ( ieo) ,  (ie~)" - - ( i e k  ), 

(f.)" ~- (f.), and (if.)" =-- -(if.) (2.3) 
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We then find that (AB)t = BtAt  and (AB) ~ = B^A ̂ . In the usual Dirac 
matrix language, A ~ is the same asfoAtfo, fu is the same as 7u, and 75 is 
essentially (ieo). We can show that the subalgebra ((e~), (ieu)) is isomorphic 
to {%, i%} so that {(fu), (/fu)} represents the extension of  the complex 
quaternion number system. We therefore write A = e + f t o  identify the e and 
fpa r t s  of  the hypercomptex number A. By defining e" -= e ̂  and f~ - - f *  we 
can show that (AB)" = B'A" and that A - A" ~ means A has zero f part. These 
are all the properties of  the number system that we shall need to generalize 
SU(2). Other aspects have been elaborated elsewhere (Edmonds, 1974; 1975). 
We just mention, for completeness, that Lorentz transformations now take the 
form x ' =  xU'(eu) = L txL ,  LL  ̂ -  I(eo), L = L ̂ ~. Dropping the restriction 
L = L ~^ gives x = xU(e,) + x4(ifo) and (4, 1) space-time ro ta t ions-a  'natural '  
generalization. 

3. Generalized SU(2) 

With this beautiftd machinery before us, it is now easy to see how SU(2) 
should be generalized: R ~ S ,  ( )* -+ ( ) t ,  and ( )~ -+ ( )^, where S = SaU(eu) 
+ SbU(ieu) + SeU(fu) + SaU'(ifu) with real coefficients (16 parameters). We now 
write the direct analogue o f  the SU(2) development in equation (1.2) and (1.3). 
This gives 

~a'=-S^~,~v'=-St~v,SS~=-l(eo),S^=St ~ a = ~ v = ~  (3.1) 

and 

S -= l(eo) + 6, 66 ~ 0, ~ 6" = - 6  = 6t  ~ generators (iek), (ilk) (3.2) 

Since u ~ e, we know that {(iek)) generates rotations in 3-space. We note that 

S ~ cos 0(eo) + sin OOfk) ~ SS" = (cos z 0 + sin 2 0) (eo) = l(eo) (3.3) 

So S is a compact six parameter Lie group (covering SO(4)). We see now why 
Lorentz symmetry must be generalized in order to contain S as a subgroup. 
The SU(2) subgroup o f  S is contained in S = S ~ = R .  

4. The Basic Representation 

Thus far we have only shown in an unusual language that 3-space rotations 
generalize easily to 4-space rotations. The representations, however, naturally 
suggest a basic set of  patrons as we now show. 

From q / =  S t ~  and the fact that S has a 4 x 4 matrix representation, we 
see that ~ has four complex number parts (eight real parameters). This form 
is similar to the l~rac equation for spin -~, so we "naturally identify this 
representation with two particles and their antiparticles: p,  n, and/5, n. 

Considering ~ as a hypercomplex number instead o f  a 1 x 2 matrix, we 
see that ( ~ ' ) t  ~ = (Sq ~ ) t  ~ = S ~ t  ~ = S t ~ t  ~. Therefore, ~ = -+ ~ t  A gives the 
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lowest dimensional representations in 4: 

(A) ~ = S t  A ~ ~ = aO(eo) + ak(iek ) + bO(fo) + bk(~fk ) 

(B) ~b = -~b* ~ :* ~ = a°(/eo)  +ak(elc) + bO(ifo) + b k ( f k )  

= ( ieo)[a°(e0) - a k ( i e k )  -- bO(fo) + b~(ifk)] 

(4.1) 

We see that (/eo)A = B and (ieo)B =( ieo)  (ieo)A = - A .  As mentioned earlier 
(ieo) is essentially 7s in Dirac notation. Though the representations are not 
eigenstates o f  (ieo), (which may mean m :/: 0), they are eigenstates o f - i ( i e 3 )  
and (fo). We can display this by a change o f  basis. For representation A this 
gives 

= a1([(eo) ~ i(ie3)] + (fo) [(eo) ~ i(ie3)]) 

+ b~_([-i(iel) ~ (ie2)] + (fo)[-i(iei) +- (ie~)]) 

+ c;([(eo) ~ i(ie3)] - (Yo)[(eo) ~ i(ie3)]) 

+ a;([-i(iel) ± (ie2)] - (t'o)[-i(ie~) ± (ie2)]) (4.2) 

In the Dirac equation we take a similar structure for 4, but, there we choose 
a basis which gives eigenstates of  - i ( i e3 )  and (i fo) for particles at rest. The 
(ifo) eigenstates (+1) correspond to E = ++.mc 2, i.e., particle/antiparticle. We 
shall assume that  the representations A and B above are not  distinct enough 
to warrant extracting more than two particles and antiparticles from them, 
instead of  four of  each. I f  four were chosen, we would get an eight parton 
theory (and eight seems to be a magic number in pat ton and quaternion 
numerology). 

The other basic representations, in this language, are 

q~' =- S^¢S,  ¢^ = +~b and A '  - S t A S ,  A t  = +A (4.3) 

But since S¢ = S ' ,  we see that there is no real difference between ¢ andA for 
the subgroup S, though there is for the group L. The lowest dimensional 
representations correspond to A = +_At andA = +A' ,  taken in all combinations. 
We fred 

(I) A = A t  = A "  ~ A  =a(eo)  + b( fo )  = a(eo) + ( fo)b(eo)  

(II) A = - A t  = - A  ^ ~ A  = ak(iek)  + bit(i lk) = ak( iek)  + ( fo)bk(iet:)  

(III) A = - A t  = A ~ :* A = a k ( f k )  + b(ieo) = ( fo)ak(ek)  + ( fo)b( i fo)  

(IV) A = A t  = - A "  ~ A  = ak(ek) + b(ifo) (4.4) 

We can show that  (E) ( fo)  = ( fo)(E)  ¢ ~ for any hypercomplex (E). But 
S = S t  ^, therefore, S commutes  with (fo). Notice also that  ( fo)[(eo)  + 0Co)] = 
+1 [(eo) _+ (fo)]  and ( fo)[ ( iek)  +- (ifk)] = _+1 [(iek) + ( i fk )] .  W~ereas, the 
representation I I I  and IV give (fo) [ I I I ] =  [IV] and ( fo)[ IV]  = [III] .  Since 
x = xt~(eu) + x4( i fo) ,  we see that these two representations correspond to the 
usual space-time representation of S0(4),  with fixed x °. 
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Though these properties do not rigorously role out the representations III 
and IV as regards partons, it may be possible to identify (fo) with something 
like strangeness and/or desirable to have partons which are eigenstates of (fo). 
At least we know (f0) commutes with the group S, though its physical meaning 
is unclear here. 

The group Shas (ie3) and (if3) as its mutually commuting generator set 
(trunk). From the spin analogy, -i(ie3) would be the isospin operator. Then 
(if3) should be an important physical operator also. Note that (fo) commutes 
with both (ie3) and (if3), which is further evidence that (fo) is an important 
physical operator. Also (ira) = (fo)(ie3), so (fo) may be the generator replacing 
(if3), physically. 

Identifying mass with the fourth space dimension, indicates (ifo) isthe 
particle/antiparticle operator. It commutes with (ie3) but not with (if3) or (fo). 
For x ---x?, we find x = xU(eu) + x4(ifo) + xS(fo) and x s is invariant under L. 
It is, therefore, possible to instead identify mass with the invariant sixth dimen- 
sion and (f0) as the particle/antiparticle operator. This is an important question, 
yet to be resolved. 

All these considerations lead us to postulate that only the I and II represen- 
tations, along with one of the ~' = Stff  representations, give the basic partons/ 
antipartons. Since L~(eo)L_ = (eo) and Lt( fo)L  = (fo), we expect representation 
I to give spin 0 partons, X, X. Since II and III can be combined to give the 10 
component representation A = - A t  (spin 2) and III is spin 1, we expect that 
II is also spin 1 as a parton representation, giving a,/3, 7, 6~,/3, and q. So, finally, 
we conclude that S produces one spin-0, two spin-I/2, and three spin 1 partons 
and their antipartons. 

5. Conclusion 

We have shown that SU(2), with two partons p, n, can be generalized in a 
natural way, using the hypercomplex number system related to the Dirac- 
Clifford algebra. We obtain a set of six basic partons, which we label "bits," 
with one spin-0 "nickel," two spin-l/2 "dimes," and three spin-1 "quarters" 
(red, yellow, green). Any relativistically adequate parton model must describe 
all observed particles: leptons, and photons, as well as hadrons. This bit model 
has a variety of bits and antibits, so there is some hope that it can span such a 
wide range of particle types. It is also compatible with relativity if relativity 
proves to need generalization-the need of which I am convinced. 

The next step is to analyze the direct product representations and particle 
families, in analogy with the procedures used on SU(3) and similar parton 
models. 
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